Stages in the catalyst-free InP nanowire growth on silicon (100) by metal organic chemical vapor deposition

نویسندگان

  • Guoqing Miao
  • Dengwei Zhang
چکیده

Catalyst-free InP nanowires were grown on Si (100) substrates by low-pressure metal organic chemical vapor deposition. The different stages of nanowire growth were investigated. The scanning electron microscopy images showed that the density of the nanowires increased as the growth continued. Catalyzing indium droplets could still be fabricated in the nanowire growing process. X-ray diffraction showed that the nanowires grown at different stages were single crystalline with <111 > growth direction. The photoluminescence studies carried out at room temperature on InP nanowires reveal that the blueshift of photoluminescence decreased as the growing time accumulates, which is related to the increase in the diameter, rather than the length. Raman spectra for nanowires at different growing stages show that the quality of the nanowire changes. The growth of InP nanowires at different growing stages is demonstrated as a dynamic process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ultracompact Position-Controlled InP Nanopillar LEDs on Silicon with Bright Electroluminescence at Telecommunication Wavelengths

Highly compact III−V compound semiconductor active nanophotonic devices integrated with silicon are important for future low power optical interconnects. One approach toward realizing heterogeneous integration and miniaturization of photonic devices is through nanowires/nanopillars grown directly on silicon substrates. However, to realize their full potential, the integration of nanowires/nanop...

متن کامل

High-quality InP nanoneedles grown on silicon

Articles you may be interested in High-quality 1.3 m-wavelength GaInAsN/GaAs quantum wells grown by metalorganic vapor phase epitaxy on vicinal substrates Appl. Relaxed, high-quality InP on GaAs by using InGaAs and InGaP graded buffers to avoid phase separation High-detectivity InAs quantum-dot infrared photodetectors grown on InP by metal–organic chemical–vapor deposition Appl. High detectivit...

متن کامل

Large-Area Direct Hetero-Epitaxial Growth of 1550-nm InGaAsP Multi-Quantum-Well Structures on Patterned Exact-Oriented (001) Silicon Substrates by Metal Organic Chemical Vapor Deposition

We employ a simple two-step growth technique to grow large-area 1550-nm laser structures by direct hetero-epitaxy of III–V compounds on patterned exact-oriented (001) silicon (Si) substrates by metal organic chemical vapor deposition. Densely-packed, highly uniform, flat and millimeter-long indium phosphide (InP) nanowires were grown from Si v-grooves separated by silicon dioxide (SiO2) stripes...

متن کامل

Growth and Characterization of III-V Nanowires and Nanoneedles by

Integration of optoelectronic materials with silicon is an important area of study, which could enable silicon CMOS-integrated optical devices for chip-scale optical communication, with the potential for higher bandwidth and lower costs. However, optical-quality III-V thin-film growth on silicon is difficult due to the crystal lattice-mismatch between the materials, and III-V growth typically r...

متن کامل

Growth and Characterization of III-V Nanowires and Nanoneedles

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012